HETEROCYCLES, Vol. 65, No. 7, 2005, pp. 1561 - 1567 Received, 5th April, 2005, Accepted, 27th April, 2005, Published online, 28th April, 2005

TOTAL SYNTHESIS OF MURRASTIFOLINE-A BY WAY OF THE Pd-CATALYZED DOUBLE *N*-ARYLATION OF A CARBAZOLAMINE WITH A 2,2'-DIBROMOBIPHENYL DERIVATIVE

Takafumi Kitawaki, Yoko Hayashi, and Noritaka Chida*

Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Abstract – The first total synthesis of murrastifoline-A (1), a biscarbazole alkaloid is described. The biscarbazole skeleton of 1 was effectively constructed by the Pd-catalyzed double *N*-arylation of carbazolamine (bottom-half segment, 3) with dibromobiphenyl derivative (top-half segment, 2) in one-step reaction. Both segments were synthesized starting from 2-amino-5-methylphenol (4).

Carbazole alkaloids are known to show wide range of biological activities such as antitumor, antibiotic, psychotropic, antiinflammatory, and antihistaminic activities.¹ Development of efficient methods for the construction of a carbazole ring is still an important issue.² While many monomeric carbazoles have been isolated from higher plants,¹ recently, much attention has been focused on biarylic biscarbazole alkaloids^{3,4} due to their interesting structures and expected biological activities.

Figure. Structure of murrastifoline-A (1) and retrosynthetic way to 1.

Murrastifoline-A (1) was isolated by the Furukawa group from the root bark of *Murraya euchrestifolia* (Rutaceae) collected in Taiwan.³ The structure elucidation study by spectral analyses revealed that murrastifoline-A is a new biscarbazole possessing a dimeric structure of 1-methoxy-3-methylcarbazole (murrayafoline-A), where the nitrogen in one carbazole unit is connected to the carbon atom at 6'-position of another carbazole unit.³ Such a *C*,*N*-bonded biaryl biscarbazole structure is very unique among the biscarbazole alkaloids,⁴ however, reports on the synthetic approach to *C*,*N*-bonded biaryl biscarbazoles are limited,^{4d,5} and synthesis of **1** has not been achieved to date. In 2001, Bringmann disclosed the total synthesis of murrastifoline-F, an isomer of **1** in which the nitrogen in a carbazole unit is bonded to another carbazole at C-4', by a lead tetraacetate-mediated oxidative coupling of 1-methoxy-3-methylcarbazole.^{5b} In this communication, we report the first total synthesis of murrastifoline-A, which fully confirmed the proposed unique structure.

Our retrosynthetic analysis suggested that the Pd-catalyzed double *N*-arylation of carbazolamine (bottomhalf segment, **3**) with 2,2'-dibromobiphenyl derivative (top-half segment, **2**) would construct the biscarbazole skeleton of **1** in one-step reaction (Figure). The double *N*-arylation of primary amines with biphenyls possessing leaving groups at C-2 and 2', recently developed by Nozaki and co-workers,⁶ is an important extension of the Buchwald-Hartwig Pd-catalyzed *N*-arylation reaction,^{7a} and proved to be an excellent protocol for the regioselective construction of multi-substituted carbazoles in one-step. The Nozaki group also reported successful synthesis of various substituted carbazoles including a monocarbazole alkaloid, mukonine by this novel methodology.^{6b} For preparation of both top- and bottom segments (**2** and **3**), we chose 2-amino-5-methylphenol (**4**) as the common starting material.

The synthesis of the top-half segment (2) commenced from the known O-tosylate (5),⁸ prepared from commercially available 4 in 89% yield (Scheme 1). Conventional iodination with N-iodosuccinimide

(NIS) of **5** afforded **6**⁹ (69%), whose Suzuki-Miyaura cross-coupling reaction¹⁰ with 2-bromophenylboronic acid in the presence of Pd(PPh₃)₄ in EtOH–benzene–2N aqueous Na₂CO₃ cleanly afforded **7** in 99% yield. Sandmeyer reaction of **7** with NaNO₂ and CuBr in acetic acid, conc. H₂SO₄ and 48% aqueous HBr gave dibromobiphenyl (**8**) in 64% yield. The *O*-Ts protecting group in **8** was removed by basic hydrolysis to give **9**, whose *O*-methylation furnished the top-half segment (**2**)¹¹ in 59% yield from **8**. The bottom-half segment (**3**) was synthesized as shown in Scheme 2. Thus, the Buchwald-Hartwitg Pdcatalyzed amination^{7b} of *p*-bromonitrobenzene with **5** afforded diarylamine (**10**) in 81% yield. Treatment of **10** with excess Pd(OAc)₂ in AcOH induced the cyclization¹² to provide carbazole (**11**)¹¹ in 53% yield. After protection of the nitrogen function in **11** with 2-trimethylsilylethoxymethyl (SEM) group (79% yield), the product (**12**) was treated with NaOH in MeOH–H₂O to provide de-*O*-tosyl derivative (**13**) along with its methyl ether (**14**)¹³ in 76 and 8% isolated yields, respectively. *O*-Methylation of **13** afforded **14**, quantitatively. Reduction of the nitro function in **14** with NaBH₂S₃¹⁴ cleanly provided the bottom-half segment (**3**)¹¹ in 84% yield.

Scheme 2

With both top- and bottom-half segments in hand, the crucial double *N*-arylation reaction was explored (Scheme 3). When a mixture of segments (2) and (3) was heated in toluene at 120 °C in the presence of $Pd_2(dba)_3$, *t*-BuONa, and ligands, the double *N*-arylation successfully took place to provide the desired *N*-protected biscarbazole (15)¹¹ in one-step reaction. Use of 2-dicyclohexylphosphinobiphenyl¹⁵ as the ligand was found to give good results, and 15 was obtained in 58% yield.¹⁶ Finally, the *N*-SEM group was removed under acidic conditions to furnish murrastifoline-A (1)¹¹ in 94% yield. The spectral data of synthetic **1** were fully identical with those of the natural product.^{1a}

Scheme 3

In summary, the first total synthesis of murrastifoline-A (1) has been accomplished. This work fully confirmed the proposed structure of the natural product and revealed that the double *N*-arylation methodology is highly effective for the one-step construction of the *C*,*N*-bonded biaryl biscarbazole structures. Further application of the double *N*-arylation strategy to the preparation of structurally more complex natural products is under investigation in our laboratory.

ACKNOWLEDGEMENTS

We thank Professor H. Furukawa (Meijo University, Nagoya, Japan) for providing us with spectral data of natural murrastifoline-A. This work was partially supported by Grant-in-Aid for the 21st Century COE program "KEIO LCC" from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

REFERENCES AND NOTES

- D. P. Chakraborty, 'The Alkaloids,' Vol. 44, ed. by A. R. Katritzky, Academic Press, Inc., New York, 1993, pp. 257-364.
- 2. H-J. Knölker and K. R. Reddy, Chem. Rev., 2002, 102, 4303.
- 3. C. Ito, T.-S. Wu, and H. Furukawa, Chem. Pharm. Bull., 1990, 38, 1143.
- 4. (a) C. Ito and H. Furukawa, *Chem. Pharm. Bull.*, 1990, **38**, 1548. (b) C. Ito, Y. Thoyama, M. Omura, I. Kajiura, and H. Furukawa, *Chem. Pharm. Bull.*, 1993, **41**, 2096. (c) H. Furukawa, *Trends*

in Heterocyclic Chem., 1993, **3**, 185. (d) S. Tasler and G. Bringmann, Chemical Record, 2002, **2**, 114.

- (a) G. Bringmann and S. Tasler, *Tetrahedron*, 2001, 57, 331 and references therein. (b) G. Bringmann, S. Tasler, H. Endress, J. Kraus, K. Messer, M. Wohlfarth, and W. Lobin, *J. Am. Chem. Soc.*, 2001, 123, 2703.
- (a) K. Nozaki, K. Takahashi, K. Nakano, T. Hiyama, H.-Z. Tang, M. Fujiki, S. Yamaguchi, and K. Tamao, *Angew. Chem., Int. Ed.*, 2003, 42, 2051. (b) A. Kuwahara, K. Nakano, and K. Nozaki, *J. Org. Chem.*, 2005, 70, 413.
- 7. a) J. F. Hartwig, *Angew. Chem., Int. Ed.*, 1998, **37**, 2046; B. H. Yang and S. L. Buchwald, *J. Organomet. Chem.*, 1999, **576**, 125; M. C. Harris and S. L. Buchwald, *J. Org. Chem.*, 2000, **65**, 5327.
 b) J. P. Wolfe and S. L. Buchwald, *J. Org. Chem.*, 2000, **65**, 1144.
- A. Zhang and G. Lin, *Bioorg. Med. Chem. Lett.* 2000, **10**, 1021; G. Lin, and A. Zhang, *Tetrahedron*, 2000, **56**, 7163.
- All new compounds described in this paper were characterized by 300 MHz ¹H NMR, 75 MHz, ¹³C NMR, IR and MS.
- N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; A. Suzuki, *J. Organomet. Chem.*, 1999, **576**, 147.
- 11. Selected data for **2**: IR (neat) 2940 and 1580 cm⁻¹; ¹H NMR (300 MHz, C_6D_6) δ 7.48 (dd, 1 H, J = 7.5 and 1.2 Hz), 7.10 (dd, 1 H, J = 7.3 and 1.8 Hz), 6.96 (ddd, 1 H, J = 7.4, 7.3 and 1.2 Hz), 6.78 (ddd, 1 H, J = 7.5, 7.4 and 1.8 Hz), 6.54 (d, 1 H, J = 1.6 Hz), 6.32 (d, 1 H, J = 1.6 Hz), 3.27 (s, 3 H) and 2.01 (s, 3 H); ¹³C (75 MHz, CDCl₃) δ 156.6, 144.0, 143.1, 138.0, 132.9, 131.3, 129.3, 127.2, 124.1, 123.9, 112.3, 110.7, 55.7 and 21.3; MS (EI) m/z 358 (M⁺+4, 49.0), 356 (M⁺+2, 100), 354 (M⁺, 51.4), 277 (77.3), 275 (79.4), 196 (43.0), 181 (41.4), 165 (21.5); high resolution MS (EI) calcd for C₁₄H₁₂OBr₂ (M⁺), 353.9255; Found 353.9254. For **11**: IR (neat) 3370, 1520 and 1320 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 8.94 (d, 1 H, J = 2.0 Hz), 8.94 (s, 1 H), 8.37 (dd, 1 H, J = 9.0 and 2.0 Hz), 7.80 (s, 1 H), 7.78 (d, 2 H, J = 8.3 Hz), 7.47 (d, 1 H, J = 9.0 Hz), 7.35 (d, 2 H, J = 8.3 Hz), 6.71 (s, 1 H), 2.47 (s, 3 H) and 2.41 (s, 3 H); ¹³C (75 MHz, CDCl₃) δ 146.3, 143.2, 141.6, 134.3, 131.9, 131.6, 131.5, 130.1, 128.8, 126.4, 122.8, 122.5, 122.0, 119.9, 117.6, 111.1, 21.9 and 21.4; MS (EI) *m/z* 396 (M⁺, 9.6), 348 (11.0), 330 (30.9), 241 (33.5), 197 (100); high resolution MS (EI) calcd for $C_{20}H_{16}N_2O_5S$ (M⁺), 396.0780; Found 396.0780. For 3: IR (neat) 3350, 2950 and 2860 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 7.37 (s, 1 H), 7.36 (d, 1 H, J = 8.4 Hz), 7.31 (d, 1 H, J = 2.1 Hz), 6.87 (dd, 1 H, J = 8.4 and 2.1 Hz), 6.72 (s, 1 H), 5.95 (s, 2 H), 3.97 (s, 3 H), 3.60 (brs, 1 H), 3.53 (t, 2 H, J = 8.1 Hz), 2.49 (s, 3 H), 0.85 (t, 2 H, J = 8.1 Hz) and -0.12 (s, 9 H); ¹³C (75 MHz, CDCl₃) δ 146.7, 139.7, 136.0, 129.2, 128.6, 125.0, 124.5, 115.8, 112.8, 110.9, 109.1, 105.8, 74.3, 65.1, 55.5, 21.8, 18.0 and -1.3; MS (EI)

m/z 356 (M⁺, 13.5), 239 (10.7), 226 (15.2), 211 (10.7), 149 (17.2), 75 (100); high resolution MS (EI) calcd for $C_{20}H_{28}N_2O_2Si$ (M⁺), 356.1920; Found 356.1922. For **15**: IR (neat) 2950 and 1500 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, 1 H, J = 7.8 Hz), 8.04 (d, 1 H, J = 1.8 Hz), 7.62 (d, 1 H, J = 8.7) Hz), 7.60 (s, 1 H), 7.47 (dd, 1 H, J = 8.7 and 1.8 Hz), 7.42 (s, 1H), 7.32 (ddd, 1 H, J = 7.9, 7.9 and 1.2 Hz), 7.22 (ddd, 1 H, J = 7.9, 7.9 and 1.2 Hz), 7.18 (d, 1 H, J = 7.9 Hz), 6.81 (d, 1 H, J = 0.6 Hz), 6.74 (d, 1 H, J = 0.6 Hz), 6.09 (d, 2 H, J = 3.9 Hz), 4.03 (s, 3 H), 3.65 (t, 2 H, J = 7.5 Hz), 3.55 (s, 3 H), 2.55 (s, 3 H), 2.50 (s, 3 H), 0.93 (t, 2 H, J = 7.5 Hz) and -0.07 (s, 9 H); ¹³C (75 MHz, CDCl₃) δ 146.9, 146, 143.2, 140.4, 132.2, 130.2, 129.7, 129.4, 128.6, 126.4, 125.7, 125.4, 123.6, 123.2, 123.1, 120.1, 119.9, 119.4, 112.9, 112.9, 110.5, 110.1, 109.8, 109.5, 74.5, 65.5, 56.1, 55.7, 21.9, 21.8, 18.1 and -1.3; MS (EI) m/z 550 (M⁺, 0.5), 433 (0.9), 405 (0.6), 359 (0.5), 167 (12.1), 59 (100); high resolution MS (EI) calcd for $C_{34}H_{38}N_2O_3Si$ (M⁺), 550.2652; Found 550.2657. For 1: IR (neat) 3420 cm⁻¹; ¹H NMR (300 MHz, acetone- d_6) δ 10.45 (s, 1 H), 8.13 (d, 1 H, J = 8.1 Hz), 8.09 (d, 1 H, J = 2.1 Hz), 7.66 (d, 1 H, J = 8.4 Hz), 7.62 (s, 1 H), 7.54 (s, 1 H), 7.40 (dd, 1 H, J = 8.4 and 2.1 Hz), 7.32 (ddd, 1 H, J = 8.4, 7.8 and 1.2 Hz), 7.20 (ddd, 1 H, J = 7.8, 7.8 and 1.2 Hz), 7.15 (d, 1 H, J = 8.4 Hz), 6.88 (s, 1 H), 6.84 (s, 1 H), 4.02 (s, 3 H), 3.56 (s, 3 H), 2.51 (s, 3 H) and 2.48 (s, 3 H); ¹³C (75 MHz, acetone- d_6) δ 147.8, 146.7, 144.0, 140.0, 132.0, 130.4, 130.1, 130.0, 129.9, 126.6, 126.4, 126.0, 125.1, 124.0, 123.9, 120.8, 120.5, 120.2, 113.4, 113.4, 117.2, 111.1, 110.7, 108.9, 56.1, 55.9, 21.9 and 21.7; MS (EI) m/z 420 (M⁺, 5.7), 270 (14.4), 252 (11.8), 58 (100); high resolution MS (EI) calcd for C₂₈H₂₄N₂O₂ (M⁺), 420.1838; Found 420.1838.

- B. Åkermark, L. Eberson, E. Jonsson, and E. Pettersson, J. Org. Chem., 1975, 40, 1365; H.-J. Knölker and J. Knöll, Chem. Commun., 2003, 1170, and references therein.
- Methyl ether (14) would be formed by nucleophilic aromatic substitution reaction of compound (12) with methoxide ion. The similar substitution reactions, in which the bromo substituents in 1-bromo-3-methylcarbazole, 8-bromo-1,2,3,4-tetrahydrocarbazole, and 7-bromo-1,2,3,4-tetrahydrocarbazole were displaced with methoxy groups by treatment with sodium methoxide in the presence or absence of CuI, have been reported. See, Y. Kikugawa, Y. Miyake, and M. Kawase, *Chem Pharm. Bull.*, 1981, 29, 1231; Y. Kikugawa, Y. Aoki, and T. Sakamoto, *J. Org. Chem.*, 2001, 66, 8612.
- 14. J. M. Lalancette, A. Frêche, and R. Monteux, *Can. J. Chem.*, 1968, 46, 2754; J. M. Lalancette, A. Frêche, J. R. Brindle, and M. Laliberté, *Synthesis*, 1972, 526; J. S. Panek, F. Xu, and A. C. Rondón, *J. Am. Chem. Soc.*, 1998, 120, 4113. Attempted reduction of the nitro group in 14 under catalytic hydrogenation conditions (H₂ in the presence of 5% Pd on carbon) resulted in the formation of many unidentified products.
- J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, and S. L. Buchwald, *J. Org. Chem.*, 2000, 65, 1158; J. P. Wolfe and S. L. Buchwald, *Angew. Chem.*, *Int. Ed.*, 1999, 38, 2413.

16. Experimental procedure for the preparation of 15: Ar was bubbled into a mixture of compound (2) (17.2 mg, 48.3 μmol), compound (3) (15.2 mg, 42.6 μmol), Pd₂(dba)₃ (7.8 mg, 8.5 μmol), 2-dicyclohexylphosphinobiphenyl (9.2 mg, 26 μmol) and *t*-BuONa (8.2 mg, 85 μmol) in toluene (0.6 mL) for 10 min. The reaction mixture was then heated at 120 °C in a sealed tube for 24 h. After cooling, the mixture was purified by column chromatography (silica gel: 2 g, EtOAc / *n*-hexane = 1/30) to afford 15 (13.6 mg, 58%) as a syrup.